Estimation of normal covariance matrices parametrized by irreducible symmetric cones under Stein’s loss

نویسنده

  • Yoshihiko Konno
چکیده

In this paper the problem of estimating a covariance matrix parametrized by an irreducible symmetric cone in a decision-theoretic set-up is considered. By making use of some results developed in a theory of finite-dimensional Euclidean simple Jordan algebras, Bartlett’s decomposition and an unbiased risk estimate formula for a general family of Wishart distributions on the irreducible symmetric cone are derived; these results lead to an extension of Stein’s general technique for derivation of minimax estimators for a real normal covariance matrix. Specification of the results to the multivariate normal models with covariances which are parametrized by complex, quaternion, and Lorentz types, gives minimax estimators for each model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stein’s Method and Characters of Compact Lie Groups

Stein’s method is used to study the trace of a random element from a compact Lie group or symmetric space. Central limit theorems are proved using very little information: character values on a single element and the decomposition of the square of the trace into irreducible components. This is illustrated for Lie groups of classical type and Dyson’s circular ensembles. The approach in this pape...

متن کامل

Characterization of Priors in the Stein Problem

The so-called Stein problem is addressed in the estimation of a mean vector of a multivariate normal distribution with a known covariance matrix. For general prior distributions with sphericity, the paper derives conditions on priors under which the resulting generalized Bayes estimators are minimax relative to the usual quadratic loss. It is also shown that the conditions can be expressed base...

متن کامل

Separable covariance arrays via the Tucker product, with applications to multivariate relational data

Modern datasets are often in the form of matrices or arrays, potentially having correlations along each set of data indices. For example, data involving repeated measurements of several variables over time may exhibit temporal correlation as well as correlation among the variables. A possible model for matrix-valued data is the class of matrix normal distributions, which is parametrized by two ...

متن کامل

Performances analysis of a Givens parametrized adaptive eigenspace algorithm

In this paper, we address an adaptive estimation method for eigenspaces of covariance matrices. We are interested in a gradient procedure based on coupled maximizations or minimizations of Rayleigh quotients where the constraints are replaced by a Givens parametrization. This enables us to provide a canonic orthonormal eigenbasis estimator. We study the convergence of this algorithm with the he...

متن کامل

Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices By

This article presents maximum likelihood estimators (MLEs) and loglikelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006